Quantitative electron microscopy of 2D materials

Yimei Zhu

Keys features
• Aberration corrected electron microscopes (sub-angstrom spatial resolution, 0.3eV energy resolution)
• Ultrafast electron diffraction instrument (2.8MeV, 120fs temporal resolution)
• in-situ capabilities, electromagnetic biasing at 6K, magnetic imaging, potential mapping, etc.

Scope of effort
• Quantitative structural analysis with various electron probes
• Compare experiment with calculations

Challenges to address
• understand the charge, orbital, spin and lattice correlation
• the role of interface and defects in 2D materials

Experimental valence electron density map of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ superconductor for (left) x=0, Tc=0, and (b) x=0.1 Tc=22.5K (optimally doped) in the (100) plane using quantitative electron diffraction. The color legend indicates the magnitude of the charge density and the contour plot has an interval of 0.05 e/Å$^3$. PRL 112 077001 (2014)