Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation

Scientific Achievement
Intercalation of the active oxygen evolution reaction (OER) electrocatalyst, nickel hydroxide, into the interlayer region of the layered manganese oxide, birnessite, leads to a remarkable enhancement of its OER activity.

Significance and Impact
Utilization of the unique interlayer water environment of birnessite by intercalating Ni-hydroxide into the interlayer region has led to improved OER catalysis. Combination of experimental results and molecular dynamics simulations show that improved OER activity is partially due to an enhancement of the electrostatic potential fluctuations of confined water molecules that increases electron transfer rates.

Research Details
– Nickel hydroxide intercalation into the birnessite structure can be performed using a simple ion exchange reaction, where nickel hydrazine complex acts as a shuttle to transport nickel efficiently.
– Electrochemical investigation reveals that Nickel intercalated birnessite results in a better oxygen evolution catalyst than either of the two materials alone.
– Detailed molecular dynamics simulation suggests that intercalated nickel hydroxide catalyst in the presence of frustrated water, which results from spatial confinement in the unique environment of the interlayer, leads to enhanced electron transfer pathways that facilitate the OER.

Akila Thenuwara, Elizabeth Cerkez, Samantha Shumlas, Nuwan Attanayake, Ian McKendry, Laszlo Frazer, Eric Borguet, Qing Kang, Michael Zdilla, Richard Remsing, Michael Klein and Daniel Strongin Angewandte Chemie (2016).

DOI: 10.1002/anie.201601935R1

Work was performed at Temple University