Pseudopotentials for hybrid density functionals and SCAN

Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe

Department of Chemistry University of Pennsylvania

- Dominate bonding
- Smooth exponential decay
- Core electrons
 - Insensitive to chemical environment

Why do we need pseudopotentials?

- Oscillation near nucleus

• Pseudopotential

- Replace core region with a finite shallow potential
- Reduce the computational cost

N e⁻

• Preserve the accuracy

Frozen-core approximation

n e⁻

- Combine core electron and nucleus to effective core (pseudo ion)
- Explicitly keep valence electrons (N > n)

Pseudopotential developments

- Hamann-Schlüter-Chiang norm conserving pseudopotential (1979)
- Generalized norm conserving pseudopotential (1989)
- RRKJ optimized pseudopotential (1990)
- Troullier-Martine soft pseudopotential (1990)
- Ultrasoft pseudopotential (1990)
- Projector-augmented waves potentials (1994)
- Links to pseudopotential databases
 - http://www.physics.rutgers.edu/~dhv/uspp/uspp-734.html
 - http://www.sas.upenn.edu/rappegroup/research/psp.html
 - http://www.physics.rutgers.edu/gbrv

Density functional calculation vs. pseudopotential development

Hybrid density functional pseudopotentials

- The exchange-correlation functional must agree between pseudopotential and plane-wave calculation
- Non self-consistent PBEO pseudopotential did not show improved accuracy [Phys. Rev. B 80, 115201 (2009)]
- First self-consistent construction of PBE0 pseudopotentials

• The nonlocal Hamiltonian

$$\hat{\left(\hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{H}}[\{\psi_{n'l'}\}] + \hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}]\right)\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r})$$

$$\text{Hartree potential}$$

$$\hat{V}_{\text{H}}[\{\psi_{n'l'}\}]|\psi_{nl}\rangle = \sum_{n'l'}\int d^{3}\mathbf{r}' \frac{|\psi_{n'l'}(\mathbf{r}')|^{2}}{|\mathbf{r} - \mathbf{r}'|}\psi_{nl}(\mathbf{r})$$

• The nonlocal Hamiltonian

$$\begin{split} \left[\hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{H}}[\{\psi_{n'l'}\}] + \hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}] \right) \psi_{nl}(\mathbf{r}) &= \epsilon_{nl}\psi_{nl}(\mathbf{r}) \\ \\ & \\ \\ \textbf{Exchange potential operator} \\ \\ \hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}]|\psi_{nl}\rangle &= \sum_{n'l'} \int d^{3}\mathbf{r}' \frac{\psi_{n'l'}^{*}(\mathbf{r}')\psi_{n'l'}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} \psi_{nl}(\mathbf{r}') \end{split}$$

• The nonlocal Hamiltonian

$$\left(\hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{H}}[\{\psi_{n'l'}\}] + \hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}]\right)\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r})$$

- Hartree and exchange potentials are orbital dependent
- Treated as spherical average over all orbital configurations via Slater integral $E = \frac{1}{2} \sum_{r=1}^{r} E[(\mathbf{M})]$

$$E_{\rm av} = \frac{1}{N} \sum_{2S+1} \sum_{L_J} E[\{\Psi\}_{2S+1} E_{L_J}]$$

E.g., for C atom, valence configurations N=15 with 5 allowed term symbols:

$${}^{3}P_{2}(5), {}^{3}P_{1}(3), {}^{3}P_{0}(1), {}^{1}D_{2}(5), {}^{1}S_{0}(1)$$
$$E_{\mathrm{av}} = \frac{1}{15} [5E\{\Psi\}_{{}^{3}P_{2}} + 3E\{\Psi\}_{{}^{3}P_{1}} + E\{\Psi\}_{{}^{3}P_{0}} + 5E\{\Psi\}_{{}^{1}D_{2}} + E\{\Psi\}_{{}^{1}S_{0}}$$

• The nonlocal Hamiltonian

$$\left(\hat{T} + \hat{V}_{ion} + \hat{V}_{H}[\{\psi_{n'l'}\}] + \hat{V}_{x}^{nl}[\{\psi_{n'l'}\}]\right)\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r})$$

Slater integral is used to obtain the average energy of Hartree and exchange terms

$$E_{\rm av} = I[\{\phi_{nl}(r)\}] + F[\{\phi_{nl}(r)\}] + G[\{\phi_{nl}(r)\}] \quad \ \text{[Slater integral]} \quad \text$$

 $I[\{\phi_{nl}(\mathbf{r})\}], F[\{\phi_{nl}(\mathbf{r})\}], G[\{\phi_{nl}(\mathbf{r})\}]$ are slater integrals containing radial wavefunctions with different n, l quantum numbers

Hybrid density functional formalism – PBEO formalism

• Mix the HF exchange with PBE exchange

 $E_{\rm xc}^{\rm PBE0} = a E_{\rm x}^{\rm HF} + (1-a) E_{\rm x}^{\rm PBE} + E_{\rm c}^{\rm PBE}$ a = 0.25 [JCP 105, 9982 (1996)]

• Combine HF formalism and Kohn-Sham equation

$$\left[\hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{H}}[\{\psi_{n'l'}\}] + \frac{1}{4}\hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}] + \frac{3}{4}\hat{V}_{\text{x}}^{\text{PBE}} + \hat{V}_{\text{c}}^{PBE}\right]\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r})$$

Invert the radial equation to obtain a screened pseudopotential

$$\hat{V}_{\rm scr}^{nl}(r) = \epsilon_{nl}(r) - \frac{l(l+1)}{2r^2} + \frac{1}{2\phi_{\rm val}(r)} \frac{d^2}{dr^2} [\phi_{\rm val}(r)]$$

Hybrid functional all-electron solver

$$\mathsf{Solve}\left[\hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{H}}[\{\psi_{n'l'}\}] + \frac{1}{4}\hat{V}_{\text{x}}^{nl}[\{\psi_{n'l'}\}] + \frac{3}{4}\hat{V}_{\text{x}}^{\text{PBE}} + \hat{V}_{\text{c}}^{PBE}\right]\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r}) \text{ iteratively}$$

Start with an initial guess for the wavefunctions ψ (*e.g.* hydrogenic wavefunctions)

Construct Hartree, exact-exchange potential, and DFT exchange-correlation potentials V_H , V_X , V_{XC}

Solve the modified HF differential equations to obtain updated wavefunctions ψ , and eigenvalues ϵ

Orthogonalize the wavefunctions $\boldsymbol{\psi}$

Pseudopotential construction

$$\psi_l(r) = \begin{cases} \sum_i c_i j_l(q_i r) & r < r_c \\ \phi_l(r) & r \ge r_c \end{cases}$$

Use spherical Bessel functions to construct Pseudowavefunctions

[Phys. Rev. B 44, 13175 (1990)]

Pseudopotential construction

Use of OPIUM

Only one input file: *.param How to run? . /opium f f.log ae ps nl ke rpt upf plot vi

PBEO pseudopotential performance – bond lengths

- Overall small (but systematic) improvements for bond lengths without further tuning the potential parameters
- Influence tends to be large in open-shell systems

All-electron (AE) calculations are performed using FHI-aims

PBEO pseudopotential performance – HOMO-LUMO gaps

 The error in HOMO-LUMO gaps is reduced using PBEO pseudopotentials by 2% on average

PBEO pseudopotential performance – bond formation energies

• Formation energies are improved by up to 4 % using PBEO pseudopotentials

PBEO pseudopotential performance - solids

			All Electron
Crystal	PBE-PBE0 (err%)	PBEO (err%)	Calc.
Lattice consta	ant (Å)		PBEO
Si	5.452 (0.073)	5.446 (-0.037)	5.448
GaN	4.539 (0.066)	4.537 (0.022)	4.536
Band Gap (eV)			
Si	1.79 (9.82)	1.78 (9.20)	1.63
GaN	3.58 (1.13)	3.56 (0.56)	3.54

• Lattice constants and band gaps are improved for solids

Implementation of SCAN

- SCAN (Strongly constrained and Appropriately Normed) density functional is a meta-GGA functional that obeys all currently known constraints
- Achieves remarkable accuracy for lattice constants of simple solids and weak interactions
- The computational time is similar to GGA
- Implemented in FHI-AIMS, VASP, (and pw.x)

Implementation of SCAN

Start with an initial guess for the wavefunctions ψ (*e.g.* hydogenic wavefunctions)

Initialize the spin-dependent charge density by $\rho_i = \frac{1}{2} \int |\psi_i|^2$ Construct Hartree, and SCAN exchange-correlation Implement SCAN potentials V_H , V_{XC} exchange-correlation Develop a new Solve spin-dependent Kohn-Sham equation to obtain solver to take updated wavefunctions ψ and eigenvalues ε care of the spinpolarization Integrate the wavefunctions ψ to obtain charge density p

Apply to real systems

- Convergence test
- G2 dataset with bond length and HOMO-LUMO gaps
- Solids lattice constants, bulk moduli and band gaps
- Comparison between all electron and plane-wave calculations

First stage benchmarking – G2 data set bond lengths

	PBE	PBEPBEO	BPEO	AE-PBE	AE-PBE0	AE-SCAN
H ₂	0.753	0.747	0.747	0.75	0.746	0.741
LiH	1.6	1.597	1.596	1.603	1.595	1.59
BeH	1.348	1.343	1.351	1.355	1.348	1.348
СН	1.137	1.122	1.122	1.136	1.124	1.127
NH	1.07	1.056	1.036	1.05	1.037	1.045
ОН	0.983	0.975	0.968	0.983	0.971	0.974
FH	0.928	0.913	0.914	0.93	0.918	0.917
Li ₂	2.719	2.725	2.725	2.728	2.723	2.726
LiF	1.578	1.567	1.566	1.574	1.562	1.563
CN	1.174	1.159	1.159	1.175	1.159	1.166
со	1.135	1.123	1.122	1.136	1.122	1.125
N ₂	1.081	1.069	1.069	1.103	1.089	1.094
NO	1.132	1.142	1.142	1.157	1.139	1.151
02	1.212	1.218	1.217	1.218	1.202	1.205
F ₂	1.42	1.382	1.382	1.413	1.376	1.386
MARE	1.088	0.611	0.607	0.871	0.452	

PBEO pseudopotential plane-wave calculations still show smaller errors on bond lengths using SCAN all-electron data as a reference.

Conclusion

- First implementation of fully sefl-consistent PBE0 pseudopotentials
 - Open source OPIUM v4.0 will be published soon on sourceforge (http://opium.sourceforge.net/)
- Systematic improvement of accuracy for PBEO calculations on molecules and solids
- Including relativity for spin-orbit coupling studies
- To implement SCAN functional in OPIUM

Acknowledgement

Dr. Andrew M. Rappe

Dr. Liang Z. Tan Dr. Julian Gebhardt

Department of Chemistry University of Pennsylvania