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Introduction CCD0+DFT Conclusions

First of all, a few useful definitions:

1 Electron Correlation: The difference between the exact
and HF energies.

Can be classified in three types:

Dynamic or short-range weak , due to instantaneous
electron repulsions.
Dispersion or long-range weak, from instantaneous

multipole-multipole interactions between electrons on
different centers.
Static or strong , which occurs due to degeneracies.

Taking into account correlation is crucial for describing many
physical and chemical phenomena.
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Introduction CCD0+DFT Conclusions

The dissociation of H2 is the paradigm for the division
of static and dynamic correlation
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Figure 1: Dissociation energy curves for the H2 molecule
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Figure 2: Dissociation energy curves for the H2 molecule
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Introduction CCD0+DFT Conclusions

Static and dynamic correlation are pervasive in bond
breaking processes
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Figure 3: Dissociation energy curves for the N2 molecule.
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Figure 4: Dissociation energy curves for the N2 molecule.
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Figure 5: Dissociation energy curves for the N2 molecule.
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Introduction CCD0+DFT Conclusions

The correlation lost by multireference methods may be
critical for weak interactions
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Figure 6: He2 dissociation curve.

haha
CCD0 sacrifices some
weak correlation in order
to describe strong
correlation. However,
the missing correlation
may be very important
in case of more subtle
interactions.
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Roughly, we can say the following about contemporary
quantum chemistry methods:

1 Good approximations exist for
the short-range dynamic
correlation (e.g., CC and DFT).

2 Dispersion correlation is more
difficult, although methods like
CC and the RPA are adequate.

3 However, practical methods for
static and dynamic correlation
are still out of reach.

We attempt to tackle this problem via
combinations of wavefunction and
density functional theories
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It seems logical to try to combine WFN methods with
DFT to tackle the correlation problem

Roughly, we can say

WFN → Can handle static correlation

DFT → Efficiently captures dynamic correlation

Thus, we may expect a good approximation to the exact
energy to be

E ≈ EWFN︸ ︷︷ ︸
Static

+EDFT
c [n]︸ ︷︷ ︸

Dynamic

However, such combinations must address three problems:

1 WFN Method Problems

2 The “Symmetry Dilemma”

3 Double Counting
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The problems of standard WFN+DFT can be
addressed by a combination of CCD0 with SCAN

∗2016 Molecular Physics Early Career Researcher Prize Paper
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CCD0 is a generalization of pCCD

The T2 operator of standard CCD can be written as a sum of
singlet- and triplet-pairing components

T2 = T
[0]
2 + T

[1]
2 .

CCD0 uses only the singlet-pairing component:

|ΨCCD0〉 = eT
[0]
2 |ΦRHF〉,

where

T
[0]
2 =

1

2

∑
ijab

σabij P
†
abPij ,

with

Pij =
1√
2

(cj↑ci↓ + ci↑cj↓) .
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Avoiding double counting in CCD0+DFT

Now, looking at the full T2 operator

T2 = T
[0]
2 + T

[1]
2 ,

The triplet-paired component is

T
[1]
2 =

1

2

∑
ijab

πabijQ
†
ab ·Qij

where Qij = (Q+
ij , Q

0
ij , Q

−
ij)

t with

Q+
ij = cj↑ci↑, Q−ij = cj↓ci↓, Q0

ij =
1√
2

(cj↑ci↓ − ci↑cj↓)

Because the Q+
ij , Q

0
ij , and Q−ij components contribute all

equally to the energy we get (for a closed shell)

ECCD0+DFT
total = ECCD0 + 3EDFA

c ↑↑ [n].
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We can extract the equal spin correlation in SCAN for
combination with CCD0

The SCAN functional constructs εc as

εc = ε1c + fc(α)
[
ε0c − ε1c

]
,

where fc(α) is a function that depends on τ , and εα=1
c and

εα=0
c are the uniform density and single orbital limits of εc.

Hence, the parallel spin correlation density is

ε↑↑c = ε1 ↑↑c + fc(α)
[
ε0 ↑↑c − ε1 ↑↑c

]
.

Furthermore, since ε0 ↑↑c = 0, we get

ε↑↑c = ε1 ↑↑c − fc(α)ε1 ↑↑c ,

and ε1 ↑↑c has been parametrized by Gori–Giorgi and Perdew.1

1Phys. Rev. B 69, 041103 (2004).
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CCD0+DFT is very accurate for problems dominated
by dynamic correlation

Table 1: Mean absolute errors (MAEs) for various properties of
small molecules for which accurate reference data are available.

MAE

Property DFT CCD0 CCD0+DFT

Bond Lengths† (Å) 0.024 0.013 0.007
Vibrational Frequencies† (cm−1) 68 22 18
Proton Affinities‡ (kcal/mol) 2.65 2.69 0.66

†First and second row diatomics.
‡Standard PA8 set of proton affinities.
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Static and dynamic correlation can also be described by
CCD0+DFT
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Figure 7: Errors in energy for the beryllium isoelectronic series.
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However, the long-range dispersion correlation remains
missing in CCD0+DFT
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Figure 8: Dissociation energy curves for the He2 dimer
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We can correct this issue by complementing with dRPA
long-range correlation

The dRPA equations are:(
A B
−B −A

)(
X Y
Y X

)
=

(
X Y
Y X

)(
ω 0
0 −ω

)
And the dRPA ground-state correlation is

EdRPA
c =

1

2
Tr(ω −A).

with
Aia,jb = (εa − εi)δijδab + 〈ib|aj〉,

Bia,jb = 〈ij|ab〉.

So we can take only same spin integrals to get same spin
correlation, and evaluate them only in the long range.

Alejandro J. Garza WFN+DFT Methods for Electron Correlation 18 / 26



Introduction CCD0+DFT Conclusions

DFT and the dRPA are good, complementary choices
for evaluating residual correlation
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Figure 9: Separation of electron-electron interaction into short-
and long-ranges.
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Therefore, we have the following approximations:

1 CCD0+DFT: For problems in which long range interactions are
not important

E = ECCD0︸ ︷︷ ︸
O(N6)

+
3

2

(
EDFT
c ↑↑ + EDFT

c ↓↓
)︸ ︷︷ ︸

O(N3)

.

2 Long-range corrected (LC)-CCD0+DFT: For problems involving
long range interactions

E = ECCD0︸ ︷︷ ︸
O(N6)

+
3

2

(
Elr-dRPA
c ↑↑ + Elr-dRPA

c ↓↓

)
︸ ︷︷ ︸

≈O(N4)–O(N5)

+
3

2

(
Esr-DFT
c ↑↑ + Esr-DFT

c ↓↓
)︸ ︷︷ ︸

O(N3)

.
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Long-range dispersion can now be described with
LC-CCD0+DFT
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Figure 10: Dissociation energy curves for the He2 dimer
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The different CCD0+DFT methods can also describe
challenging bond breaking processes
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Figure 11: Dissociation energy profiles for the N2 molecule using a
cc-pVDZ basis.
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A challenging system: Beryllium dimer—an “impossible
molecule”
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Figure 12: Dissociation energy profiles for the Be2 dimer using an
uncontracted aug-cc-pVTZ basis.
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Application of CCD0+DFT to actinide chemistry: the
uranyl ion UO2+

2

Table 2: Bond lengths (Re in Å) and harmonic vibrational
frequencies (ωe in cm−1) for UO2+

2 .

Method Re ωas ωs ωβ
HF 1.648 1293 1220 267
DFT 1.715 1086 985 123
CCD0 1.698 1129 1053 541
CCD0+DFT 1.693 1121 1052 220
Best Estimate 1.690 1120 1035 178
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Conclusions for CCD0+DFT:

Advantages

1 Avoids the usual problems of
standard WFN+DFT.

2 No need of empirical
parameters or symmetry
breaking.

3 Reasonable description of
static and dynamic
correlation.

4 Can also capture dispersion
correlation in its
LC-CDD0+DFT variant.

Disadvantages

1 Same computational cost as
coupled cluster.
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