Calculations on structural, electronic, and energetic properties

Liping Yu¹, Yubo Zhang², and Jianwei Sun² ¹Department of Physics, Temple University ²Department of Physics, University of Texas at El Paso

Overview of the tutorial

- Purpose: This section is to familiarize users with calculating some basic properties of materials. These include relaxing a material to obtain the equilibrium structure at 0 temperature, electronic structure (e.g., density of states and band structure) for a given ionic configuration, and energetic properties of different phases.
- Approaches: SCAN meta-GGA
- Codes: VASP
- Materials: Si

Running SCAN in VASP

INCAR tags: METAGGA = SCAN LASPH = .TRUE. ADDGRID = .TRUE.

POTCAR:

Check if it contains the kinetic energy density of the core electrons: grep kinetic POTCAR

Note on Band-structure and DOS calculations

- self-consistent vs. non-self-consistent
- For non-scfconsistent:
 - Need converged charge-density and kinetic energy density
 - Kinetic energy density is not written out after calculation.

four examples

• Si

- Lattice constant, band structure
- Phase transition
- Defect formation energy
- MoS₂
 - Lattice constant, band structure, DOS
 - Non-selfconsistent, "incorrect"

Unusual Mechanical and Electronic Properties of 2D Materials Predicted by Using SCAN

Liping Yu

Department of Physics Temple University

Collaborators:

Qimin Yan, Adrien Ruzsinszky, John Perdew

Unique Attributes of 2D Materials

- van der Waals interlayer bonding
 - Artificial heterostructures
 - New functionalities
- Atomically thin & highly flexible
 Flexible and large-area electronics

Two examples

- Extraordinary 2D bending effects
 - Yu, Ruzsinszky & Perdew
 Nano Letters, 16, 2444(2016)

Counter-intuitive auxetic effects
 in IT MX₂
 Yu, Yan & Ruzsinszky,
 Nat. Communs. 8, 15224 (2017).

Bending Scheme: Case of MoS₂ Nanoribbon

Similar to the set-up for 2-point bending stiffness measurement

Band Structure of Armchair MoS₂ Nanoribbon

L.Yu, A. Ruzsinszky, J. Perdew, Nano Letters, 16, 2444 (2016)

Free Carriers in MoS₂ Semiconductors

Bending Localizes Hole Carriers in MoS₂

Bending switches on/off p-type conductivity

Monolayer MX₂: 2H vs. IT

- Mechanical bending can tune conductivity in 2H MX₂.
- Experimental validation underway

• IT-MX₂ have unusual mechanical response.

Auxetics: Materials with a Negative Poisson's Ratio

 $\begin{array}{ll} \text{Poisson's} \\ \text{Ratio} \end{array} \quad \nu_{yx} = -\frac{\varepsilon_y}{\varepsilon_x} > 0 \end{array}$

• Non-auxetic

$$v_{yx} = -\frac{\varepsilon_y}{\varepsilon_x} < 0$$

- Auxetic
- counter-intuitive
- Unusual

Potential Applications

Bulletproof Vest & Armor Enhancement

Artificial Blood Vessels

Auxetic Fiber Reinforced Composites

Artery dilator

Applying tension to the auxetic sheath causes it to expand laterally, which opens up the artery

Common Structural Mechanisms

Adv. Funct. Mater, 21, 2712(2011)

Lakers, Science 235, 1038(1987)

NPR is often considered as a purely geometric property. ۲

This work finds a new type of auxetic materials: IT-MX₂

- Only d² and d³ MX₂ compounds exhibit an intrinsic in-plane NPR.
- NPR is not a purely geometric property.

Yu, Yan & Ruzsinszky, *Nat. Communs.* 8, 15224 (2017).

Structural Deformation Mechanism

Basic Building Unit : X-M₁M₂M₃ triangular pyramid

Yu, Yan & Ruzsinszky, Nat. Communs. 8, 15224 (2017).

Electronic Origin: t_{2g}- p Interaction

 Strong t_{2g}-p orbital interaction attracts X atom toward the basal plane. Electronic Origin: t_{2g}- p Interaction

 Weak or marginal t_{2g}-p orbital interaction

 Strong t_{2g}-p orbital interaction attracts X atom toward the basal plane. Electronic Origin: t_{2g}- p Interaction

 Weak or marginal t_{2g}-p orbital interaction

- Strong t_{2g}-p orbital interaction attracts X atom toward the basal phane.
- Strong t_{2g}*-p orbital interaction lies along the bond direction.

Conclusions

- Mechanical bending can be use to tune change charge localization (hence conductivity) in MoS₂ and phosphorene nanoribbons.
- d²-d³ IT-MX₂: a new type of auxetic 2D materials

Bending Localizes Hole Carriers in Phosphorene

L.Yu, A. Ruzsinszky, J. Perdew, Nano Letters, 16, 2444(2016)

Intermetal t_{2g} -orbital Interaction

 $M: d^{n}s^{2} \rightarrow M^{4+}: d^{n-2}s^{0}$

Evidence of Intermetal t_{2g} Coupling

 M_3

M₁

 M_2

Х

• M-X-M bond angles depend on delectron count

Intermetal t_{2g} - p(X) Interaction

